Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task
نویسندگان
چکیده
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
منابع مشابه
Improvement of Working Memory Performance by Parietal Upper Alpha Neurofeedback Training
Working memory (WM) is a part of human memory, the ability to maintain and manipulate information. WM performance is impaired in some neurological and psychiatric disorders such as schizophrenia and ADHD. Neurofeedback training is a self-regulation method which can be used to improve WM performance by changing related EEG parameters. In this paper we used neurofeedback training to improve WM pe...
متن کاملWorking Memory Training in Children with Mild Intellectual Disability, Through Designed Computerized Program
Objectives: The aim of this research is designing a computerized program, in game format, for working memory training in mild intellectual disabled children. Methods: 24 students participated as test and control groups. The auditory and visual-spatial WM were assessed by primary test, which included computerized Wechsler numerical forward and backward sub- tests, and secondary tests, which c...
متن کاملIncreased parietal activity after training of interference control.
Recent studies suggest that computerized cognitive training leads to improved performance in related but untrained tasks (i.e. transfer effects). However, most study designs prevent disentangling which of the task components are necessary for transfer. In the current study, we examined whether training on two variants of the adaptive dual n-back task would affect untrained task performance and ...
متن کاملEffects of action video game training on visual working memory.
The ability to hold visual information in mind over a brief delay is critical for acquiring information and navigating a complex visual world. Despite the ubiquitous nature of visual working memory (VWM) in our everyday lives, this system is fundamentally limited in capacity. Therefore, the potential to improve VWM through training is a growing area of research. An emerging body of literature s...
متن کاملWorking Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions
Training working memory (WM) improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM), various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive tra...
متن کامل